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Abstract. Conformant planners solve problems with a correct but incomplete
description of the initial state, by finding plans that are valid for all possible 
assignments of the unknown atoms.  Most conformant planners, however, do 
not handle universal quantification, which is a problem when the set of all 
domain objects is unknown or very large, and thus can not be enumerated.  This 
paper introduces PSIGRAPH, a conformant planner that operates with
universally quantified statements in the initial and goal states, as well as in the 
action preconditions.  Thus, PSIGRAPH does not need to know the complete 
set of domain objects.  We present the algorithm and the results of its
experimental evaluation, showing that PSIGRAPH is competitive with other 
conformant planners.  PSIGRAPH is based on Graphplan, but differs from 
previous approaches such as Conformant Graphplan in that it does not create
multiple plan graphs.

1 Introduction

Graphplan [3] is a well-known and well-studied AI Planning algorithm.  From a layer 
of initial conditions, it iteratively generates new layers of subsequent conditions that 
can result from actions, detects whether these subsequent conditions entails the goal, 
and if so, evaluates whether the path of actions that lead from the initial conditions to 
the goal is a valid solution.  Graphplan repeats these three steps, extending the graph 
until a valid solution is found.  A large amount of prior work has addressed the 
optimization of the closed-world Graphplan, as summarized in [14].

The solution extraction portion of Graphplan has proven to be the most
computationally intensive, so optimizations have included memoizing unworkable 
solutions, as presented in the original Graphplan paper, forward checking to detect 
invalid solutions in advance, dynamic variable ordering [2], and formulating solution 
extraction as a constraint satisfaction problem (CSP).  Variations on the latter
approach [10] attempt to construct minimized explanations of why a solution is
unworkable in the form of an unworkable set of propositions at a given time step, 
which we refer to as anogood.  These nogoods are stored, and future solutions are 
checked via an efficient algorithm [9] to detect whether they have a nogood as a 
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subset.  If so, the solution is not explored further.  Moreover, each nogood is
regressed [10] to previous layers,  to take further advantage of it.

The above optimizations have been implemented in closed-world Graphplan based 
planners.  In closed-world planners, all propositions are assumed to be false unless 
otherwise noted.  There are no unknown propositions.  Recent work has explored the 
open-world problem, where some propositions are unknown.  Conformant planners
do no sensing and attempt to produce a single plan that will work in every
contingency no matter what is unknown.  Conformant Graphplan [13] is a Graphplan-
based algorithm that produces a Graphplan for each possible world.  More recent 
planners, including GPT [4], have expressed conformant planning as a search in a 
belief space.  MBP [7] uses Binary Decision Diagrams [6] to represent belief states.
CAltAlt-LUG [5] condenses multiple planning graphs into a Labeled Uncertainty 
Graph to conduct the search in belief space.

However, none of the above planners handle quantified information, or information 
about an infinite number of items.  Finzi et al [8] produced an open-world planner, 
implemented as a theorem prover in the situation calculus, that could represent 
statements like “For all Blocks x, x is not on top of A”, whereas the above planners 
would need to make a qualitatively different statement like (Clear A).  We use an 
open world planning language called PSIPLAN [1] that can represent quantified 
statements about negated propositions. Furthermore, PSIPLAN can add exceptions to 
these statements, such as “For all Blocks x, x is not on top of A, except if x is Block 
B.”  Babaian and Schmolze called these statements psiforms.  Exceptions to a psiform 
represent unknown information.  That is, given the previous statement, the state of 
Block B being on top of A is unknown.  PSIPOP [1] is a conformant partial order 
planner based on PSIPLAN.

 This paper describes a new planner called PSIGRAPH, which implements a 
Graphplan based algorithm using the PSIPLAN language, and is thus able to act as a 
fast conformant planner for use in domains where quantification is  needed. 

In the next section, we review the original Graphplan algorithm, followed by a 
description of PSIPLAN.  Afterwards, we explain PSIGRAPH, which combines the 
two.  We then describe the methodology used in testing PSIGRAPH on the Blocks-
World and Bomb-In-Toilet -with-Clogging (BTC) domains.  Finally, we evaluate the 
results and draw conclusions.

2 The Closed-World Graphplan Algorithm

Graphplan constructs a layered, directed, acyclic graph.  The first layer is assigned 
level 0, and the nodes in even numbered layers represent ground literals.  The nodes 
in odd numbered layers represent operators.  No literal or operator is represented 
more than once in a given layer.  The initial conditions are assigned to nodes in layer 
0.  Letting the current layer of operators be called k where initially k=1, Graphplan 
repeats the following steps, increasing k by 2 each time, until it finds a solution.

• All possible operators, including maintenance operators (which simply copy a
condition from one layer to the next condition layer) are assigned to layer k.
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• For each operator in level k, Graphplan checks to see whether its preconditions are 
present on layer k-1.  If not, the operator is removed from the graph.  If so, a 
directed edge is created from each precondition on level k to the operator.

• The effects of the operator are added to layer k+1, with directed edges from the 
operator to these effect nodes.

• When all operators have been examined, mutexes are created between pairs of 
operators that cannot co-occur.  For example, a mutex would occur between two 
operators whose preconditions are mutually exclusive.

• Next, mutexes are created between inconsistent pairs of conditions on level k+1.
• After all mutexes have been added, Graphplan evaluates whether layer k+1 entails 

the goal.  If so, it is possible that Graphplan has found a solution.  In the next phase, 
called Solution Extraction, Graphplan starts with the goal conditions from layer k+1 
and checks to see whether there exists a set of edges from non-mutex actions that 
produce them.  If so, Graphplan recursively checks to see whether these actions 
have non-mutex conditions which produce them.  If the recursion reaches the initial 
layer, which by definition has no mutexes, then Graphplan has found a solution.

3 PSIPLAN

PSIPLAN [1] is an expressive language designed for open world domains. It offers 
limited quantification and tractable, complete reasoning.  A database in PSIPLAN 
consists of ground literals and psiforms, the latter of which express possibly
quantified negative information. Such quantification makes a database much more 
compact since there are often many more false facts than true ones. For example, a 
briefcase may have a pencil in it but there may be many things not in the briefcase.
Moreover, for infinite domains, or for finite domains where some objects are
unknown to the planner, quantification is essential. Consider the impossibility of 
stating that there is nothing in the briefcase except a pencil if the domain is infinite, or 
if the domain is finite but the planner cannot name all the objects in it.  In both cases, 
one cannot enumerate all ground instances of ~In(x,B) .
To state that briefcase B has nothing in it except possibly pencil P in it PSIPLAN uses 
a psiform  [~In(x,B) except x=P]. .Here the x is a universally quantified variable and 
~In(x,B) represents that no x is “in” B.  The exception x=P means that ~In(x,B) is not 
necess arily true when x=P.  [~In(x,B) except x=P] is equivalent to the standard first 
order sentence PxBxInx =∨¬∀ ),(. . Combined with the atom In(P,B), it implies that 
P and nothing else is in B.

Psiforms are even more general in two ways.  First the main part, which is the part 
before the word "except", can be a clause of negated literals.  For example, [~In(x,B) 
or ~Pencil(x)] states that "for all x, x is either not in B or x is not a pencil" -- i.e., there 
are no pencils in B (though there might be other things in B).  Second, the exceptions 
can themselves be "quantified" in that a set of ground clauses can be excepted.  For 
example, [~InDir(x,y) or ~TexFile(x)] states that "for all x and y, either x is not in 
directory y or x is not a Tex file," which is equivalent to saying that Tex files are not 
in any directory.  But this is odd.  A more reasonable statement might be [~InDir(x,y) 
or ~TexFile(x) except y=/tex], which states that Tex files are not in any directory 
except possibly the directory /tex.
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In some domains, one can use tricks to represent quantified information without 
explicit quantification, such as the use of Clear(x) in the blocks world.  But the use of 
Clear depends crucially on the requirement that there is at most one block on top of 
another.  In the briefcase example, we cannot use a trick such as Empty(x) because a 
briefcase can have 0, 1, 2 or more objects in it.  We would need Empty(x), Empty1(x) 
to represent that x is empty except for 1 object, Empty2(x), etc.

The reasoning algorithms for psiforms include entailment, logical difference and 
logical image.  Entailment is needed because we now have quantification.  For 
example, if our goal is that from above, namely that no block be on B, [~On(x,B) or 
~Block(x)], we can satisfy this with nothing being on B, [~On(x,B)], or with nothing 
being a block, [~Block(x)].  Logical difference lets us "subtract" one psiform from 
another to see what is not entailed.  For example, P1=[~On(x,B) or ~Block(x)] 
"minus" P2=[~On(x,B) except x=A], which states that nothing is on B except possibly 
A ,, yields P3=[~On(A,B) or ~Block(A)], i.e., to entail P1 using P2 we must also have 
P3.  Image is the complement of difference.  The image of P2 on P1 is the subset of 
P1 that is entailed by P2, which is P4=[~On(x,B) or ~Block(x) except x=A].  All three 
types of reasoning are used in planning.

Formally, a PSIPLAN database is a set of ground literals and/or psiforms.  A 
psiform is P=[~P1(x) or … or ~Pm(x) except σ1, …, σn] where x is possibly a vector of 
variables, M(P)=[~P1(x) or … or ~Pm(x)] is called the main form  and E(P)={σ1,…,σn}
are the exceptions.   Each σi is a substitution that binds a (not necessarily proper) 
subset of the vector of variables, x, to constants. The meaning of a psiform P is the 
conjunction of the clauses in φ(P).  When P has no exceptions, φ(P) is the set of all 
ground instantiations of P, i.e., φ(P)={M(P)σ | M(P)σ is a ground clause}.  Otherwise, 
φ(P)= (φ(M(P)) \ (φ(M(P)σ1) U  … U φ(M(P)σn))) where \ is set difference.

A ground clause C1 entails another ground clause C2, written C1|=C2, if and only 
if the literals in C1 are a subset of the literals in C2.  A psiform P1 entails a psiform 
P2, P1|=P2, if and only if every clause in φ(P2) is entailed by some clause in φ(P1).
The image of P1 onto P2, written P1> P2, is the subset of φ(P2) that is entailed by 
P1.  Thus φ(P1 > P2)={p | p∈φ(P2) and φ(P1)|=p}.  Finally, the e-difference (i.e, 
logical difference) of P2 minus P1, written P2-P1, is the subset of φ(P2) that is not 
entailed by P1.  Thus φ(P2-P1)={p | p∈φ(P2) and ~( φ(P1)|=p)}.  (P1 > P2) and (P2-
P1) partitions φ(P2).  We note that image and e-difference can be represented by a set 
of psiforms, and that all three operations -- entailment, image and e-difference --
require time and space that is polynomial in the size of the database under certain 
reasonable assumptions [1] which we make in this paper.

4 PSIGRAPH

We split the description of PSIGRAPH into four parts: the definition of a planning 
problem, the overall algorithm, graph generation, and solution extraction.

4.1 Definition of a Planning Problem

PSIGRAPH is given the following:
• A set of initial conditions, which consists of ground literals and/or psiforms
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• A set of goals, which consists of ground literals and/or psiforms.
• A set of operators, each of which consists of:

o a name, which specifies the variables in the operator structure.
o a set of preconditions, which consists of literals and/or psiforms.
o a set of effects, which consists of  literals.

In the currently implemented version of PSIGRAPH, we do not allow conditional 
effects and disjunctions are limited to psiforms.

The overall PSIGRAPH algorithm is in Figure 1 and is the same as the closed-
world Graphplan algorithm.

4.2 Graph Generation

The graph generation portion of PSIGRAPH is based on that of the closed-world
Graphplan in that each precondition of each operator is checked to see if it is entailed 
in the previous layer.  If all of the preconditions for the operator are so entailed, the 
operator is retained and the effects of the operator are generated for the next layer.
Otherwise the operator is removed from the graph.  However, there are three issues 
presented by the use of psiforms in the PSIGRAPH domain.
(1) Preconditions may be nearly entailed by propositions.
(2) There may be more than one way to entail a precondition.
(3) Generated psiforms on the next layer may only be partially mutex with other 

generated psiforms, and this will make future reasoning difficult.
We explain each of these in turn.  But first, we say that a psiform P1 nearly entails
another psiform P2 if and only if the main part of P1 entails the main part of P2, 
ignoring exceptions, i.e., P1 nearly entails P2 iff M(P1)|=M(P2).

Algorithm PSIGRAPH

Current-Level = Initial-Conditions; Iterations=0

Repeat
Iterations++;

Next-Level = Generate-New -Layer(Current-Level);

If Find-Plan(Next-Level) == SUCCESS
then Return(SUCCESS);

End if

Next-Level = Current-Level;

If iterations > MAX_ITERATIONS, Return(FAIL);

end Repeat

Fig. 1.   The overall PSIGRAPH  algorithm.

4.3 Multilinks

The first issue arises when a combination of two or more propositions from a layer 
entail a precondition or goal, but neither by itself is sufficient for such entailment.
For example, let a precondition state that block B is clear of anything on top, i.e.,
[~On(x,B)], and let the previous layer include the propositions:

[~On(x,B) except x=C, x=D], ~On(C,B), ~On(D,B)
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Together, these three conditions entail the precondition.  In such a case, PSIGRAPH 
draws a multilink between the operator and the three prop ositions.  A multilink in 
PSIGRAPH acts just like a link or an edge in Graphplan.  It is a set of edges from one 
or more propositions on layer k to an operator on layer k+1.  As a plan proceeds these 
edges must be followed atomically, that is, all at once or not at all.  Note that the 
closed-world Graphplan may be viewed as a form of PSIGRAPH where all the 
multilinks have exactly one edge.

4.4 Finding the complete set of Multilinks

The second issue is that a precondition may be entailed by more than one multilink.
For PSIGRAPH to be complete, it must find all possible multilinks.  Thus it
implements the function Satisfy-Goal, which returns the set of sets of propositions in 
a given layer where each set, taken together, entails a given goal.  It e-subtracts  each 
potentially helpful proposition from the goal, and recursively calls itself to satisfy the 
remainder.  The algorithm is in Figure 2 where \ is set subtraction and – is e-
difference.

The first argument to the recursive call is the union of the set of goals without G 
and the e-difference of G minus P.  The latter is the portion of G that is not entailed 
by P.  In general, e-difference returns a set of psiforms.

Function Satisfy-Goal (Goals, Props, Sofar) 

- Goals is a set of psiforms to achieve.

- Props is the set of conditions to examine.

- Sofar is the current partial solution set.

If Goals is empty then return {Sofar}
// Return a set  whose only element is the set Sofar.

else Let Result = {}

For each P in Props
For each G in Goals

If P nearly entails G

then Result=Result U
Satisfy-Goal((Goals\G) U (G-P),

  Props\P, SoFar U {P})

end inner for

end outer for

return Result

end If
end Function

Fig. 2.  Satisfy-Goal

The first call for a given Goal is: Satisfy-Goal({Goal}, Props(Layer), {})

where {Goal} is a singleton set containing Goal, Props(Layer) is the set of
propositions in the Layer and {} is the empty set.
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4.5 Partially Mutex

Just like Graphplan, PSIGRAPH generates all of an operator’s effects on the next 
layer.  For negated literals, determining mutexes between conditions on this next layer 
is the same as Graphplan since all literals are ground: If A is an atom, mark as mutex 
the pairs A and ~A.  With psiforms, mutexes are more complicated because an atom 
A might be inconsistent with only part of a psiform P, i.e., P might entail many 
ground clauses where A is inconsistent with only some of them.  For example, 
A=On(A,B) is inconsistent with P=[~On(x,B)] but P entails many ground literals 
besides the one that is inconsistent with A.  We cannot mark A and P as mutex 
because it is an overgeneralization and may prevent finding some solutions.  Instead 
we split P into two parts: P1, which represents the subset of P that directly conflicts 
with A, and P2, which is the remainder of P.  In the above example, we split P into 
P1=[~On(A,B)] and P2=[~On(x,B) except x=A].

The above is accomplished using the image and e-difference operation described 
earlier.  An atom A is inconsistent with a psiform P iff P|=(~A).  If not, there is no 
mutex.  If so, we calculate P1=([~A] > P) and P2=(P1-[~A]).  Remember that P1 and 
P2 are sets of psiforms, and we note that P1 must be a singleton set.  If P2 is empty
then no splitting occurs because [~A] entails all of P.  In this case, A and P are simply 
marked mutex.  If P2 is not empty, then node P is replaced by P’=(P1 U P2) in the 
graph and A is marked mutex with the single psiforms in P1.   P1 and P2 inherit the
uplinks from P.  Their downlinks are easily recalculated from P’s downlinks.

4.6 Solution Extraction

Solution extraction of PSIGRAPH follows the algorithm of Kambhampati [10] by 
using Explanation-Based Learning (EBL) and Directed-Backtracking (DDB).  Several 
issues that arise due to the use of psiforms in PSIGRAPH require only minor 
modifications to the algorithm
(1) There may be more than one set of propositions that entails a goal or

precondition.
(2) A set of propositions may be mutex, even though there is no pairwise mutex.  We 

refer to these sets as nogoods.
The first issue is solved merely by following all possible multilinks backwards 

during backtracking.  Although this increases the search space, the EBL/DDB
algorithm is extended to mark additional sets of unreachable propositions as
memoizations of nogoods.  The only difference is that in PSIGRAPH, a failed 
solution could return more than one conflict set.  Each conflict set is stored as a memo 
and regressed.  The memo sets are stored in a UB-Tree [9].

The second item above refers to disjunctive psiforms.  A disjunctive psiform may 
be mutex with a pair of atoms taken together, while being mutex with neither 
separately.  These sets are detected at graph generation time by  scanning the layer for 
sets of atoms each of which is mutex to a term in the disjunction. They are stored as 
nogoods in the UB-tree.
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5 Evaluation

PSIGRAPH was implemented in Allegro Common Lisp, and tested on the BTC
(bomb in toilet with clogging [11] ) and Blocks-World domains.  For the Blocks-
World domain, we generated problems using the BWStates program [12] and recoded 
them in PSIGRAPH.  For BTC, we rephrased the initial conditions as follows.  In this
example, there is one toilet, T1, and 2 packages, P1 and P2.

[~Package(x) except x=P1, x=P2],
Package(P1), Package(P2), Toilet(T1), ~Clogged(T1) 

The first proposition states that nothing is a package except possibly P1 and P2.  We 
also rephrased the goal.

[~Package(x) or ~Armed(x)]
i.e., every x is either not a package or not armed.  The Dunk(P,T) action had 
preconditions Package(P) and ~Clogged(T), and effects Clogged(T) and ~Armed(P).
The Flush(T) action had no preconditions, and effect ~Clogged(T).

We also performed experiments where it was not known whether the toilet(s) were 
clogged (i.e, we removed ~Clogged(T1), etc., from the initial state), and the effect 
was small.  We will soon see that PSIGRAPH is not sensitive to this type of change in 
the initial state.  We ran our experiments on a 2.4Ghz Dell Linux workstation.
We used  two different versions of PSIGRAPH. The first, PG1, performed an 
exhaustive solution extraction search on each layer before failing and proceeding to 
the next layer. PG1 alw ays finds an optimum parallel solution.  The second,  PG2, 
differs from PG1 in the following ways:
• (Mod 1) All pairs of non-maintenance actions were labeled mutex.
• (Mod 2) Solution extraction failed after n nogoods were found, where n is the 

number of operators in the domain, unless the number of planning layers was at a 
theoretical maximum (in which case solution extraction failed).  The last solution 
extraction performed before PSIGRAPH gives up is always a complete search.

• (Mod 3)  Solution extraction was only attempted every fifth layer.
(Mod 1) means that PG2 finds only linear plans.  Problem BTC(40,6) requires 13 

time-steps under PG1 and 81 timesteps under PG2, although both have the same 
number of non-maintenance operators.

(Mod 2) prevent s the planner from getting bogged down in solution extractions that 
are likely to fail.  As a result, it may return non-optimal plans.  But as long as the last 
attempt is a full solution extraction, it will never fail to solve a plan because of (Mod 
2).  This is because solution extraction works just fine on overly long graphs.  BTC 
was not assigned a theoretical maximum, but the Blocks-World domain has a
maximum number of plan steps of 2 times the number of blocks

(Mod 3) has the same intention as (Mod 2) .
Table 1 shows our results in BTC 1-toilet problems.  BTC 1-toilet results have been 

published for other conformant planners, and a summary in [5] includes results for 
CAltAlt-Lug [5], HSCP, GPT [4], and CGP [13].  The summary shows HSCP as the 
fastest timing on this domain, taking 98 seconds for the 20 package problem, 674 
seconds for 40 packages, and 5100 seconds for 60 packages.  We note that these 
planners allow conditional effects but not quantified information, whereas
PSIGRAPH does not allow conditional effects, but does allow limited quantified 
information.  The effect is that the difference in expressiveness helps make BTC an 
easier problem for PSIGRAPH, as the DUNK action has no preconditions that need to 
be explored.
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Table 2 compares the BTC 10-package 3-toilet problem (BTC(10,3)) and
BTC(40,6), where the possible clogging of all toilets was unknown, to published 
results of WSPDF [8] , who used a 333 MHz Sun Sparc 10 Ultra workstation. Finzi et 
al use a domain dependant BadSituations marker to limit their search space.  In 
WSPDF, a BadSituation occurs when a toilet is flushed twice without an intervening 
dunk, when a package is dunked when there is an undunked package lower in
number, and when a toilet is flushed when there is an unflushed toilet lower in 
number.  We did not use the

Table 1. Timings of various planners on various domains.  Times are in seconds.  PSIGRAPH 
was run 5 times on a 2.4 Ghz Pentium processor.  All other results come from [5] on a 2.66 Ghz 
Pentium 4.  Times are in format (x/y), x is in seconds, y is in plan steps.  All plans in the same 
row produce the same number of plan steps, unless otherwise noted.  * indicates no solution

Domain PG1 PG2 Caltalt
Lug

HSBP CGP

BTC
(20,1)

2.46/39 1.7/39 651 98 465/3

(40,1) * 14.4/79 8009 674 *
(60,1) * 80.2/119 38393 5100 *

Table 2. Timings in the BTC domain for multiple toilets with high uncertainty.  PG1 and 

PG2 were run using a 2.4 Ghz Pentium 4 processor.  WSPDF is reported from [8] on a 
333 Mhz UltraSparc 10.  * indicates no solution.

Domain PG1 PG2 WSPDF
BTC(10,3) 12.5/7 1.2/19 .32/20
BTC(40,6) * 80.3/79 114/80

Table 3 . Averaged results of running PSIGRAPH on 10 random examples in the BW 

domain.  Domains are of the form BW(a,b) where a is the number of blocks and b is 

the number of blocks whose location is unknown.  Results are of the form x(y)/z,w here
x is mean time in seconds, y is mean plan steps,. And z is the maximum number of 

propositions found in a single layer. ‘*’ indicates a trial had no solution found after 10 

minutes, ‘- ‘ indicates the experiment was not run

Domain PG1 PG2
BW(8,0) 3.9(3.6) / 136 21.6(4.3)
BW(10,0) 28.2(5) / 210 *
BW(11,0) 81.7(5.7) /253 *
BW(12,0) 334.1(4.1)/300 *
BW(15,5) 37.8(4.4) /210 -
BW(20,10) 54.1(5.2)/210 -

.

above domain restrictions but we did try to limit the search space in PG2 (see above).
As the results show, PG1 produces optimal solutions, even on multiple-toilet

problems.  This is because it performs a complete search of the solution space.  Its 
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disadvantage is that it spends large amounts of time performing failed solution
extractions, and this is enough to make the planner time out for large problems.

PG2, by contrast, finds solutions much faster.  The speed of PG2 is in part an 
artifact of the simplicity of the BTC domain, as PG2 does not need to spend much 
time at all in solution extraction. In these experiments, PG2 was dominated by the 
graph generation phase, a trend that would reverse itself on more difficult problems. 
Graph generation is a comparatively easy task whereas solution extraction requires 
searching an exponential number of possible solutions.  Furthermore, if the metric of 
finding n mutexes per attempt at solution extraction (Mod 2, where n is the number of 
literals on the layer) makes little progress on each iteration, PG2 might take longer 
than PG1.  Also, PG2 relies on the hope that it will find a solution without exploring 
the whole search space.  We ran PG2, for instance, reversing the order that the 
operators are considered (that is, we tried preferring maintenance actions instead of 
preferring non-maintenance actions), and PG2 showed the same difficulties for larger 
BTC domains as PG1.  Thus, PG2 may prove to be fragile on other domains.  The 
results above for PG2 should be viewed as an optimistic scenario, not the expected 
scenario.  PSIGRAPH is presented with a similar dilemma to that faced by a closed-
world Graphplan with a large number of propositions.  We note that the BTC domain 
will generate approximately 2*P propositions per layer, where P is the number of 
packages, as there are P initial conditions of the form (Package P), and P exceptions 
to [~Package(x)].

We ran PG1 and PG2 on the Blocks-World domain to test the algorithm in a more 
difficult domain as well as to test its sensitivity to the number of unknowns in the 
initial state.  We used the BWStates program [12] with various numbers of blocks 
with various numbers of unknown locations.  Each problem was translated to
PSIPLAN, including elimination of Clear and use of psiforms instead.  Table 3 shows 
the tradeoff between PG1 and PG2.

Table 3 shows that PG1 is better on domains like blocks-world, presumably 
because in the blocks-world doing an exhaustive solution extraction early and often is 
a good idea since more mutexes will be found anyway.  It also shows that PSIGRAPH 
is relatively insensitive to unknowns in the domain.  Domains (15,5) and (20,10) are 
comparable to (10,0), in that both have the same number of known facts in the initial 
state.  Unknowns will not affect solution extraction; they only affect the time taken 
for graph generation as they increase the number of operators to check.  It should be 
noted that Finzi et al. also timed their WSPDF theorem prover on the Blocks-World
domain, with a domain-specific BadSituation() predicate which favored exploration 
of good towers. Their planner produced 17-step plans in 31.2 seconds, with an 
additional 50.1 seconds to compile the domain for 20 blocks and 10 unknowns on a 
333 Mhz UltraSparc processor.  These results are roughly comparable to ours.
However, PSIGRAPH did not rely on any additional domain  information, like the 
BadSituations..

8 Conclusion

We introduced PSIGRAPH, a conformant planner based on Graphplan that uses the 
PSIPLAN language, which allows for limited quantification.  PSIGRAPH can work in 
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infinite domains, and in finite domains where not all objects are known and admits 
very compact representations of domains with a large quantity of negative facts.

We evaluated PSIGRAPH on the BTC and Blocks-World (BW) domains, and 
compared results from other planners.  Only one of these other planners allows
quantification, namely WSPDF of [8] .  For several BTC problems, PSIGRAPH is 
faster than most other planners tested.  In BW, PSIGRAPH is comparable to WSPDF, 
though it is not clear how WSPDF’s domain dependent BadSituations affected its 
timings.

Future work will improve PSIGRAPH, investigate more domains, and develop a 
better understanding of the differences between PG1 and PG2.  We will also expand 
PSIGRAPH to allow conditional effects and general disjunction in the initial state, 
and will explore the use of binary decision diagrams [6] for both ground and 
quantified formulas.
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